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Erv Wilson derived and discussed a taxonomy of scales resultant from the
Moments-of-symmentry (MOS) construction. As is the case with any
taxonomy, it is limiting in that it hides the true unifying principles and logic
of the universe of all binary scales. Here I outline an alternative way of
constructing the MOS that is simpler and more general than the original
formulation.

By simply defining the two parameters a and b (denoting the number of
note steps of given sizes A and B) without reference to whether one
interval is greater or smaller, we gain generality and can see the hidden
logic behind scales. Not only do we reduce the number of cases to
consider by a factor of 2. If we lift the requirement that intervals need to
be positive, we can even introduce a transformation procedure mapping
between different MOS scales. This will allow us to map the full universe
of binary scales (i.e. scales consisting of two step sizes) onto the diatonic
universe of Western music that most of us are familiar with. This in turn
allows musicians to comfortably explore a variety of MOS scales while
leveraging their experience playing on the piano keyboard, and can
potentially serve as a valuable tool for composition in general.

To show how such a mapping can be achieved, we first draw the coprime-
tree, a graph of pairs (a, b) in which a and b are coprime, i.e. they do not
share any prime factors. We draw arrows between nodes that map
f : (a, b) → (a, a + b) and g : (a, b) → (b, a + b) starting from the node (1, 1)

(while removing the duplicate (1, 2) after the first step). Continued to
infinity this procedure generates all possible pairs of coprime numbers.

https://en.xen.wiki/w/MOS_scale
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A resulting rule is that the step size with the smaller number of ocurences
is always noted first. The Western diatonic scale thus belongs to the node
(2, 5), denoting 2 and 5 notes of each size, respectively, resulting in
diatonic scales with 7 notes total.

In the following we show how we can easily transform between MOS
scales. Each transition can be viewed as a linear transformation on the
lattice of the two coordinates, and we can move back and forth on this
tree graph, mapping scales between each other.

Let us begin by drawing a Western diatonic scale (C-Major) onto a lattice
of the two coordinates a and b (using the x and y-axes respectively).



This lattice extends into infinity on every side, and we assign notes to
each node. The grey node above the E, for instance, is a whole step
above the E, thus is an F#. Adding accidentals thus is moving diagonally:
Adding a sharp accidental to a note is equivalent to moving up and left,
i.e. adding (−1, 1) to a note, whereas adding a flat is moving down and
right, i.e. adding (1, −1). On this lattice, there is no identification of F# with
Gb, they are two different notes, and in general (i.e. temperaments other
than 12-TET) have different pitches. Furthermore, we can add an arbitrary
number of accidentals to any note, thus having note-labels for every node
on our lattice. Also note that there is a direction of enharmonic
equivalence (which is in the direction (−2, 1) ) and a direction of constant
pitch, which is (−2, 1) in the case of the 12-TET, but is arbitrary in general.
Any value for the direction of constant pitch given by (−α, 1) with α > 1

yields a tuning in which the size of interval A is smaller than that of B.
Pythagorean tuning, all Meantone temperaments and all TET's can be
readily described by particular choices of α. E.g. 31-TET is recovered by
α = 5/3.



Also note the highlighted and shaded areas. Assigning notes on a piano
keyboard is tantamount to a projection of notes falling inside the
highlighted strip, that covers parts of the lattice, onto the one-dimensional
piano keyboard. The strip runs parallel to the line connecting a note with
its octave and has a width that accommodates exactly twelve notes per
octave. When mapping notes from the Western diatonic system to the
piano keyboard, there is a choice to be made: Will the key between the F
and the G be assigned an F# or a Gb? The highlighted piano strip makes
this decision visually explicit. By moving the strip to the left or to the right
one can make a choice that fits the needs of the pieces performed.

Since this (a, b) = (2, 5) system is what we are used to, it is desirable to
understand the other scales in the context of this particular system. Since
walking the coprime tree depicted above is just linear transformations, we
can transform any of the scales in our generalized MOS into any other,
and in particular into the one we are used to. We demonstrate how this
can be achieved using an example. We arbitrarily pick a specific scale
from the (a, b) = (3, 5) system, with 8 notes per octave, 3 steps of size A
and 5 steps of size B, distributed as ABBABBAB.



Step (1) is to go from coprime-tree-node (3, 5) to (2, 3). It is the inverse of
the transform g : (a, b) → (b, a + b) that we used to go from (2, 3) to (3, 5)

in the coprime-tree. That inverse is the linear transform
g−1 : (a, b) → (b − a, a). If we apply it to each note on our (3, 5)-lattice and
draw the path correspondingly, we thus have transformed our scale into
the (2, 3)-lattice. (Note that every note-node in one lattice gets mapped to
one in any other. This must be so: The sums that appear in f and g can
only yield integers, and both maps are bijective.) This yields the middle
figure, which shows the ABBABBAB pattern in the (2, 3) system. Step (2)
is to move from node (2, 3) to (2, 5) in the coprime-tree, by using the
transform f : (a, b) → (a, a + b). This yields the figure to the right.
Consider our transformed scale. We can observe that we can go from C
to C in 8 steps, with 3 steps going down a minor second and 5 steps
going up a minor third. (5 ⋅ 3 − 3 ⋅ 1 = 12 semitones and 5 ⋅ 2 − 3 ⋅ 1 = 7

diatonic steps.) The transformed scale yields the following sequence of
(classical (2, 5)-system) notes: C-B-D-F-E-G-Bb-A-C. It is a 8-note (3, 5)-
diatonic scale transformed into our usual Western (2, 5)-diatonic world.

By using a different mode of the same scale, starting on the B, we can
readily recover the famous B-A-C-H motif, and see that it in fact belongs
to walking the notes of a two-note scale from the (3, 5) system in
sequential (logical, not pitch) order (subtitled in German notation):

C B D F E G Bb A C



Take note that simply by walking this scale we obtain a pleasing melodic
line. Its appeal is based exactly on the property that it only uses two
different intervals. Our mapping between scales thus can well turn out to
be a practical tool of composition. We can speculate that J.S. Bach
himself might have been aware of these kinds of structures. We could
walk this scale in a similar way as usual melodic lines are walking a
Western diatonic scale, up and down the scale.

Because of the structural similarity between all the MOS scales, there are
thirds of exactly two different sizes, defined by the interval sequences AB
and BB, which in (2, 5) world map to a major second and a diminished
fifth. The stack of third triads thus are

which does not sound convincing in standard Western tuning. (Maybe we
could use stacks of fourths? They again come in two sizes only, namely
ABA and ABB, amounting to an augmented first and a perfect fourth. This
does not sound convincing, either.)

Nevertheless, all seven diatonic notes of the C-Major scale are part of our
new B-A-C-H scale, as well, thus we can build all the usual triads (plus
some using the B-flat), they are just not built from every second note of
the scale. Besides, if one would decide to re-tune (which is a simple
rotation of the direction of equal pitch in our lattice) in such a way that all
steps in our (3, 5) system are into the positive pitch direction (i.e. choosing
the direction of constant pitch with α < −1), it is plausible that one could
find a tuning in which stacks of thirds have a pleasing sound. It also could
make sense to keep the mapping to the piano while doing the re-tuning.
This would result in an assignment of pitches to the keys on the piano

B A C H          B A C H



keyboard that is not increasing from left to right anymore. Nevertheless it
would still have the important structural property of being consistent.

A different way of re-tuning the piano keyboard could prove more fruitful.
One could re-assign the pitches of the Western system to different keys in
such a way that playing the white keys plus a chosen black one in
sequential order would yield our (2, 5)-mapped (3, 5)-diatonic scale. This
way, playing melodies consisting of ascending or descending sequences
along the new scale would be very easy. In any case of retuning, the
resulting non-sequential order of pitches along the piano keyboard could
need some getting-used-to, but it would be straightforward to familiarize
oneself to a particular mapped scale.

The real benefit, however, will come from applying both transforms at
once. That way, one can map sequential tunings of arbitrary MOS scales
to the piano keyboard (given they have less than 12 notes per scale) and
one has 12 − (a + b) keys left for key changes.

Changing keys works analogously in any of the MOS scales: Raising or
lowering a single note will shift the cyclic pattern. For instance, in our
(3, 5) scale we can raise the 2nd note, which transforms the pattern
ABBABBAB (which we could call (3, 5)-dorian) into BABABBAB. Raising
an accidental in the (3, 5)-system mapped into Western diatonic world
amounts to going from C a minor third up, thus Eb would become the
second note of our scale instead of the B. (The (2, 5)-interval of raising a
(3, 5)-note is thus a diminished fourth.) The (3, 5)-dorian of the changed
key would start at 4. Similarly, lowering the 7th note of the scale (replacing
Bb with F#, a diminished fourth down) yields the pattern ABBABABB,
which would make the 6th the tonic of the new key. We have similar
modulation spaces in any of the MOS-scales, and by mapping them onto
the piano keyboard we thusly have made them accessible to piano
players and composers.

Considering our re-tuned keyboard, having 8 pitches in our scale means
we can, given 12 notes per octave, change key 4 times (compared to 5 in



the usual Western diatonic case of 7 diatonic notes per octave and non-
degenerate, i.e. non-12-TET tuning.)

The combinatorial richness of tuning an instrument in one MOS scale and
transforming an arbitrary other one into it offers quite some space for
exploration and idea generation. Together with the suggested mapping
onto the piano keyboard makes it accessible to many musicians.

It is also noteworthy that the introduced mapping procedure implies a
mapping of conventional musical notation onto arbitrary scales. If one can
give up the idea that notes higher on the vertical axis should have higher
pitch (which is not strictly the case, anyway as E# > Fb), our conventional
musical notation thus accommodates arbitrary binary scales. Together
with a tuning prescription (specifying the direction of constant pitch and
the size of the octave), the Western notation system thus, at least in
theory, is sufficient for the whole MOS universe (and more). Whether such
an extension of the usage of our notation conventions is practically
feasible stays to be proven by time.

As a side note, the analogy between (a, b)-lattices and isomorphic
keyboards is evident. Consistent note layouts can simply be transformed
between each other by arbitrary affine transforms of the lattice. I have
implemented the PitchGrid , which in the hopefully not too distant future
will have all the scales discussed here as a virtual online isomorphic
keyboard and also will work as a MIDI-effect that translates a standard
MIDI signal (e.g. from a MIDI controller with a piano keyboard) into an
MPE signal (to control an MPE enabled VST synth, for example) via the
WebMIDI standard, thus enabling experimentation with arbitrary binary
scales.

Besides practical concerns, a major objection to exploring the MOS
universe is the concern that non-(2, 5) scales might not sound as well as
the Western diatonic system when used with instruments with (almost)
harmonic spectra. While this certainly is true, (the Western diatonic
system is by construction a good fit to harmonic spectra, as it originates
from the Pythagorean tuning procedure,) new technology allows us to

https://pitchgrid.io/


utilize synthesizers that make it possible to micro-tune the partials of a
sound. This effectively allows us to reverse the logic spectrum → diatonic
system and enables the construction of sounds specifically tuned to an
arbitrary MOS scale in a particular tuning of choice. Remember that, in
general, the spectrum of a resonating physical body is not harmonic.
There is considerable research in this direction, notably by William A.
Searles.

There is no perfect harmony. Scales, tunings and timbre are matters of
expression of emotion, and can be significant part of the story the
musician tells. Understanding the foundations of tonal structure and
sound allows to make conscious choices and will reflect in the quality of
compositions. I hope I can contribute toward making different scales more
accessible for the practitioner.

Peter

https://sethares.engr.wisc.edu/

